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Non-linear laws of fluid flow through anisotropic porous media are written out in invariant tensor form for all crystallographic 
point symmetry groups. The equations, as is customary in seepage theory [1, 2], are represented by expressions containing the 
seepage velocity up to and including the third degree. Expressions defining non-linear flow resistances are given and it is shown 
that, when one transfers from linear to non-linear seepage laws, the symmetry group of the flow properties may change. For 
example, the isotropic flow properties manifested in Darcy's law may become essentially anisotropic in a non-linear law and display 
asymmetry, that is, they may be different along one straight line in the positive and negative directions. It is shown that, compared 
with linear seepage laws for anisotropic media, when flow properties may be defined by just four essentially different types of 
equation, in non-linear laws the appearance of anisotropy is highly diversified and the number of distinct types of equation increases 
considerably. © 2002 Elsevier Science Ltd. All rights reserved. 

It is well known from experimental data that the range of velocities of a fluid which obeys a linear seepage 
law- Darcy's law, which defines the relation between the vector fields of the fluid velocity and the pressure 
gradient - has upper and lower limits [3, 4]. The upper limit of the range in which Darcy's law is applicable 
is determined by the appearance of inertial forces at high flow velocities, and the lower limit, by physico- 
chemical effects, due to the fluid interacting with the porous medium and by the non-Newtonian rheological 
properties of the fluid [5, 6]. Up to the present, however, constructions of non-linear seepage laws have 
been confined to isotropic porous media. At the same time, it is well known that real soils and collectors 
of hydrocarbon materials possess anisotropy [4-6]. In this paper, therefore, we will consider versions of 
the construction of non-linear seepage laws for anisotropic porous media with a given point symmetry 
group, which will be written out in invariant form for all crystallographic symmetry classes. 

1. F U N D A M E N T A L  A S S U M P T I O N S  A N D  F O R M U L A E  

The macroscopic description of flows through porous media is based on the assumption that effective 
vector fields of the fluid velocity (a vector with components wi) and pressure gradient (a vector with 
components V,p) exist, and that these fields satisfy the relation 

V , P =  ft(w,,P,l.t, xa ,Ta)  (1.1) 

where 13 is the fluid density, la is its dynamic coefficient of viscosity, Xa are invariant scalar parameters 
characterizing the porous medium and possibly the fluid, and Tc~ are material tensors that determine 
and define the symmetry of flow resistance. 

In the theory of the seepage of a viscous, incompressible, Newtonian fluid in an undeformable porous 
medium it is assumed that the fluid properties are determined solely by the coefficient of viscosity la 
[2-5]. We shall therefore assume from now on that the symmetry of the material tensors Ta in Eq. (1.1) 
is determined and defined by the symmetry of the pore space. The assumption that the function in Eq. 
(1.1) is linear leads to Darcy's law. The generalization of the seepage law within the limits of assumption 
(1.1) implies expansion of the function f~ in a Taylor series in powers of wi 

V , p  = - q j w j  - r, jmw jw  m - rijmnWjWr~W" (1.2) 

The material tensors 1[ r,). 11, [Irwin 11 and l] r~m, [I that define the non-linear flow properties must be invariant 
under the point group of the pore space; this group is either assumed to be given, when one is solving 
direct problems, or has to be determined, when one is solving inverse problems. Allowance for quadratic, 
cubic and higher degrees of approximation, therefore, requires the construction (or definition) of 
appropriate tensors. 
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Using results obtained previously, representation (1.2) may be written down for all point symmetry 
groups of textures and crystals, apart from cubic terms of the expansion [7], and for the symmetry groups 
of textures - to within fifth-order terms [8]. However, such a representation is extremely cumbersome 
and is only an approximation to the functional dependence (1.1). At the same time, it is well known 
that in the case of isotropic tensor functions, due to the existence of relations among the invariants, 
the general form of the non-linear relation may be represented by a compact formula in which, instead 
of constants, there are functions of the invariants [9]. For example, for tensors of rank 2 such a 
representation is given by the Hamilton-Cayley formula. A solution has been obtained [10] of the 
problem of constructing generalized Hamilton-Cayley formulae describing the dependence of vector 
upon vector for the symmetry groups of textures. The general form of the vector potentials and functions 
consistent with crystal symmetry has been derived [11]; however, the formulae define the potentials 
and non-linear functions of a vector argument only in a Cartesian system of coordinates, so that the 
representation is not as general as has been achieved for symmetry groups of textures. On the other 
hand, the formulae frequently involve arguments of fourth and higher degree, that is, they presuppose 
a degree of accuracy which, in applied problems of subsurface hydromechanics, yields no quantitative 
or qualitative modification of the result, merely complicating its derivation. As already remarked, in 
order to represent non-linear laws in seepage theory for isotropic porous media one uses equations 
that generally contain the fluid velocity up to the second degree and rarely the third. Therefore, having 
retained the formulae in representations of the vector functions of [11] that contain the vector argument 
only up to the third degree, and using systems of governing parameters characterizing the geometrical 
properties of anisotropic media [7], one obtains the non-linear governing equations of seepage theory 
for crystal symmetry groups in invariant tensor form. 

To illustrate the transformations carried out when one transfers from the representation of a non- 
linear tensor relation in a Cartesian system of coordinates to an invariant tensor form, we will consider 
two simple examples for the symmetry groups 6/4 and 3/4 of a cube (cubic crystal system) (the notation 
used here for symmetry groups is that of Shubnikov). 

The symmetry group 3A is defined [11] by principal invariants of the form wiw,, WIW2W 3, W41 "l- W42 "at 
W 4, and the non-linear vector function is given by the formula 

grad p = -ft (wtel + w2e  2 + w3e3)- f 2 ( w 2 w 3 e l  + wswje 2 + WlW2e3) - (1.3) 

+ w e2 + 

where)~ are arbitrary functions of the principal invariants. As simple tensors determining and defining 
the geometrical properties of the symmetry group 3/4 the following tensors were used [7] 

g = e f + e ~ + e ~ ,  T d=e,e2e 3+e2e,e 3+e2e3e ,+e3e2e,+e3e,e 2+ete3e 2 

O h = e 4 +e  4 +e 4 

in which, as in (1.3), e, are the unit vectors of the crystal physics Cartesian basis; powers of basis vectors 
and the expressions themselves are understood as dyadic and polyadic products; here and below, the 
notation proposed in [7] is used for all simple (basic) tensors. 

In terms of the basis tensors g, Td, Oh, formula (1.3) may be rewritten as 

V , p  = - f2 ,  ,jkw, wk - f30 h ,j, %w, wt (1.4) 

Formula (1.4), unlike Eq. (1.3), is a non-linear seepage law in invariant tensor form, and it may be written 
in any system of coordinates. Note that the same seepage law is obtained for symmetry group 2/3 of~the 
cubic system. 

Symmetry group 6A is defined by principal vector invariants 

w,w,, w, w2 + w3wl + w2w3, w?w w  

and the non-linear vector function is given by the equality 

grad p = -f~(w,e, + w2e 2 + w3e 3 ) - f2 (w~e, + w23e2 + w33e3)- (1.5) 

- f 3wlw2w3(w2w3e t  + wlw3e 2 + WlW2e 3) 
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where f  are arbitrary functions of the principal invariants. As simple tensors determining and defining 
the geometrical properties of the symmetry group 6/4, the tensors g, Td, Oh were used [7]. Using the 
simple (basis) tensors, formula (1.5) may be rewritten as 

V , p  = - f l  w, - f20~h~,jktWj w~ W t -- f3T~a)i#T~a)tmnW~W~ wtw m w,  (1.6) 

or, ignoring the last term 

V , p  = - f l  w, - f2Ot~)q~tw~w~wt (1.7) 

The governing equations for symmetry groups 6/2 and ¾ of the cubic system also have the form (1.7) 
up to the third power of the fluid velocity. 

Similar arguments yield invariant tensor representations of non-linear seepage laws for the other 
crystal symmetry groups also. Therefore, omitting the details, we will present the explicit form of the 
governing relations for the remaining symmetry groups. The corresponding symmetry group is indicated 
below in braces; Vip(m • 4 : m) denotes the right-hand side of the relation for the symmetry group 
m • 4 : m, and so on. 

Tetragonal sys tem 

V , p = - f l w  , - f 2 B v w j  - f30~h)vk twjwkwt  {m.4 : m,4 : 21 

V , p  = V , p ( m .  4 : m) - f4T~d~,jkw)wk {4. m} 

V, p = V iP(m .  4 : m)  - f4Oth)v~t~t,n wj w k w m {4 : m } 

V , p  = V p(4  : m) -  fsBvT~d)jktwkwt {4} 

V , p = - f l b  , - f2wl - f30¢h) ,#twlwkw t {4.m} 

V,p = V,p(4. m) - f40¢h),ykt~tmWjWkW,n {4} 

Trigonal a n d  hexagonal  sys tem 

V , p = - f l w ,  - f2B, j w j  

V,p = - f ; b ,  - f2gqwj  

V, p = - A  wj - f2 B,j wj - f3Dt3h~Ok wj w~ 

V,p = V,p(m. 3 : m)- f4Dt3n~ ,# f~k twjwt  

V , p  = V , p ( m .  6 : m) - f3O~3d~jktw j wkw t 

V ,p  = V , p (6 .  m) - f3Dt3h}i.ik~"2klWjWl 

V,  p = V, p(3. m) - f4D~ 3h),~k w j w k - fsb, D~3h)j~ t w j w k w t 

{m.6: m , 6 : m , 6 : 2 , 6 . m }  

{6,6.m} 

{m-3: m,3: 2} 

13:m} 

{g} 

13.m} 

{3} 

Note that the formulae for the symmetry groups m • 6 : m, 6 : m, 6 : 2, 6 • m of the tetragonal and 
hexagonal system are described by non-linear seepage laws identical with those for textures that have 
the symmetry of a cylinder, while the symmetry groups 6 and 6" m are described by non-linear seepage 
laws identical with those for textures that have the symmetry of a cone. 

R h o m b i c  sys tem 

v ,p  = - A  ", - f2o~2h~o w j - AM, j  % 

V , p  = V,p(m. 2 : m) - f4D~2n)vEO,,,Mmkwjwk 

V , p  = - f l  b, - f2D{2h~qwj - f 3M, jw j  

{ m . 2 : m }  

{2 : 2} 

{2. m} 
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Monoclinic system 

V ,p = V ip(2 . m) - f4f~,kD~zh)kjw s - fsf~,kD~2h)ksbtw jwt {2} 

V,p = - f i g  - f2 c, - f3D{2h~qWi {m I 

V ,p = V,p(m.  2 : m)-  f4~'2,kDI2h)klW l -- f5O(2h)ij[2kmDt2h)mlW jWkWl {2 : m} 

Triclinic system 

. e .  (3)r,~ W - - ' "  ( 2 ) r ~  W --  V , p = V , p ( 2 : r n ) - j 6 w i k  ~ ( 2 h ) k l  j J7tUik t"~(2h)kj j 

(3) 
-fsO,2n)OO~) O,2h)mtw , wk wt - fgO,2h)qO~kmO¢2h)mtW )WkWt {2} 

V,p= - f ~ a , - f 2 c , - f 3 b ,  {1} 

To simplify the notation, the seepage laws have been written in a Cartesian system of coordinates, 
and the symmetrization operation has not been indicated; it is therefore assumed that all the tensors 
are symmetric with respect to all subscripts. In the general case, this means that the coefficient f, is equal 
to the sum of tensors obtained by permuting the subscripts in the symmetrization operation. 

2. D E F I N I T I O N  OF FLOW P R O P E R T I E S  

Anisotropic flow properties along the direction defined by a unit vector with components n i are defined 
by relations of the following type [1] 

k(n)=-w,n, /Vp or r ( n ) = - V , p n , / w  (2.1) 

where w and Vp are the moduli of the seepage velocity vector and the pressure gradient, respectively. 
The first equation of (2.1) determines the value of the flow resistance coefficient when the direction 
of the unit vector with components rt i coincides with that of the pressure gradient; the second determines 
the value of the flow resistance when the direction of the unit vector coincides with that of the seepage 
velocity. Substitution of the non-linear seepage laws written out above into the second equation of (2.1) 
gives the explicit form of the flow resistance for all symmetry groups of textures and crystals. 

As an example, we shall consider only (1.4) and (1.7) for the symmetry groups of the cubic system. 
Substitution of the non-linear seepage law (1.4) into (2.1) yields the following expression for the flow 

resistance 

r(n) = ft + 3f2n,n2n3w+ f3( n4 +n~ +n4)w  2 (2.2) 

where n, are the components of the unit vector, defined in the crystal physics system of coordinates. 
For the non-linear governing equations (1.7), the expression for the flow resistance is 

(2.3) 

Formulae (2.2) and (2.3) differ only in the presence of a term containing the first power of the seepage 
velocity. However, it is precisely the presence of that term in (2.2) that causes the flow resistance for 
symmetry groups ¾ and 2/3 to possess asymmetry of the flow properties, that is to say, if the flow direction 
is reversed, the flow resistance will not have the same values in the "forward" and "reverse" directions. 
The asymmetry effect is observed for all directions in which nlnzn  3 ~ O. 

The effect of asymmetry of the flow properties is observed for all symmetry_groups whose governing 
equations involve tensors of odd rank (these are the symmetry groups 4 • m, 4. m, 4, 4, m" 3 : m, 3 : 2, 
3 : m, 3- m, 3, 6, 6. m, 2 : 2, 2.  m, 2, m, 1). 

An important observation here is that, in the crystal symmetry groups of the cubic system considered 
here as an example, the flow properties in the linear governing equations are isotropic for all symmetry 
groups. Thus, a change from linear governing equations to non-linear ones changes the symmetry group 
of the physical properties. 

The change in the symmetry group of flow resistance (permeability) may cause a substantial change 
in the techniques used to perform experimental research and interpret experimental data. Indeed, for 
porous media exhibiting isotropic flow properties in Darcy's law, any direction is the principal one for 
the tensor of the flow resistance coefficients (permeability). Therefore, in a laboratory determination 
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of flow properties, the specimen may be oriented in an arbitrary way with respect to the crystal physics 
system of coordinates; nevertheless, the characteristics obtained as a result of measurements may be 
processed by standard techniques and they yield the value of the coefficient of absolute permeability 
(flow resistance). 

However, if anisotropy appears on changing to describing the non-linear properties of the medium, 
the selected direction may prove to be non-"principal" (in the sense of the vectors V,p and w, being 
parallel). The measured characteristics, if processed by standard techniques, will then yield the "effective 
permeability" and will depend on the ratio of the diameter of the specimen to its length [13]. In fact, 
if the seepage flow takes place along a non-principal direction, the measured flow rate will depend on 
the relation between the length and diameter of the specimen. Under such conditions the "effective 
permeability" will vary from the value of the directional permeability (for a thin plate) to the reciprocal 
of the directional flow resistance (for a long rod) [13]. Such an experiment has indeed been described 
[14], but because the medium was assumed to be isotropic even in the context of describing non-linear 
properties, the effect was not confirmed. In particular, for the symmetry groups of the cubic system the 
"principal" directions in the non-linear governing equations are the directions of the crystal physics 
coordinate axes - the directions of the edges of a cube representing the unit cell of the crystal [15] and 
directions coinciding with those of the diagonals of the cube. 

Similar effects, due to the change in the symmetry of flow resistance (permeability) on changing 
from linear governing equations to non-linear ones, are also observed for symmetry groups of crystals 
in the tetragonal, hexagonal and trigonal systems. In the case of linear governing equations, the flow 
properties of all these crystal symmetry groups are identical with those of anisotropic textures. The 
flow properties of anisotropic textures are characterized by the presence of a plane of isotropy of 
the flow properties (and they are consequently often called transversally isotropic textures). When one 
changes from linear to non-linear governing equations, all the crystal symmetry groups of the tetragonal 
system have governing equations different from those for anisotropic textures. Moreover, in none of 
the symmetry groups is the isotropy plane of the flow properties preserved. Once again, as in the case 
of the symmetry groups of the cubic system, the "principal" directions are still the directions of the 
axes of the crystal physics system of coordinates. 

Half of the symmetry groups of the hexagonal and trigonal systems possess non-linear governing 
equations analogous to the equations of anisotropic textures (m • 6 : m, 6 : m, 6 : 2, 6 : m are textures 
with the symmetry of a cylinder and 6, m. 6 are textures of the symmetry of a cone). The other half of 
the symmetry groups possessnon-linear governing equations different from those for textures (symmetry 
groups m" 3 : m, 3 : 2, 3 : m, 6, 3 '  m, 3). Consequently, in a laboratory determination of flow properties, 
versions may appear in these cases as well in which the characteristics determined are not true but 
"effective". 

For the symmetry groups of the rhombic, monoclinic and triclinic systems, changing from linear to 
non-linear governing equations produces an effect of asymmetry of the flow properties (symmetry groups 
2 : 2, 2 - m, 2, m and 1) and different governing equations (Darcy's laws for all groups of each of the 
above-mentioned systems were identical). 

Depending on the soil structure (oriented, ordered, chaotic [6]) and the type of collector (porous, 
fractured, etc. [4, 5]), real porous media may possess a variety of local symmetries of the pore space 
and correspond to either type of formula as presented above. 

3. R E P R E S E N T A T I O N  OF N O N - L I N E A R  SEEPAGE LAWS 

The explicit form of the functions ot; the invariantsf, in the non-linear generalized seepage laws, and 
the values of the tensor components in expansion (1.2), may be determined by processing experimental 
data. Assuming that the seepage flow properties of the medium are isotropic, the present experimental 
data are satisfactorily approximated by formulae of the following form [1] 

V p = a w + b w  2 or V p = a w + b w  2+cw 3 (3.1) 

the first of which is known as Forchheimer's formula. One may therefore expect that the non-linear 
seepage laws for anisotropic media may also be represented by similar formulae, especially as in the 
course of experimental measurements it is almost always assumed a priori, without proof, that the 
properties are isotropic. In generalized representations of non-linear seepage laws one then stipulates 
a class of functions determining and defining seepage flow properties (polynomials formed by convoluting 
the basis tensors with the flow velocity vector) and their order. The representations of non-linear seepage 
laws written out above involve certain functions of the invariants that may be coefficients of basis tensors 
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of ranks one, two, three and four (for example, fbi, fBow j, ffff(d)i]kWjWk, fO(h)ijkIWjWkWI). According to our 
assumptions, we deduce that all functions that may be coefficients of the basis tensors of rank four (or 
of combinations of such tensors) are constants. The functions that may be coefficients of material tensors 
(ai, bi, ci) of rank one for symmetry groups 4 • m, 4, 6 • m, 6, m, 2" m, 2 and 1 may be expressed as 

f =  ab,w, + b(b,wi) 2 + c(b~w,) 3 (3.2) 

where a, b and c are constants. Formula (3.2) represents a function that may be the coefficient of a 
material vector with components bi. It is obvious that functions that may be coefficients of the vectors 
with components ai and c, are analogous in form. 

The representation of the "isotropic" termfwi in non-linear seepage laws may be taken as 

f =  a + bw (3.3) 

The following remark should be noted. Representing a non-linear seepage law in the form (1.2) does 
not lead to Forchheimer's formula (3.1) for an isotropic porous medium, since the quadratic term in 
the law is due to a tensor of rank three, which vanishes identically. Nevertheless, this discrepancy between 
experimental results and formula (1.2) is easily eliminated if one resorts to generalized formulae for 
non-linear seepage laws. In fact, the generalized non-linear seepage law for isotropic porous media has 
the form [11] 

V p = - f w  ,, f = f(  w 2) (3.4) 

Therefore, processing of experimental results on the assumption thatf  = a + bw leads to Forchheimer's 
seepage law. 

Functions appearing as coefficients of the tensors 116',j II, IID(z~)ijll, II ~,kO~zh)kjll may, be expressed 
either as constants or, by analogy with the isotropic term with inertial "corrections,' as constants 
multiplied by invariants, formed by contracting tensors with the flow velocity vector. Functions defining 
the asymmetry of flow properties may be given as constants. 

The representations obtained here for non-linear seepage laws in anisotropic media possessing crystal 
symmetry, as well as the accompanying analysis, indicate that the study of non-linear flows through porous 
media should yield additional information on the structure of the pore space. 

We wish to thank V V. Lokhin for his interest in this research and for useful discussions. 
This research was supported by the Russian Foundation for Basic Research (0001-00609). 
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